Si tenemos razón, se están produciendo big bangs incluso ahora, mientras el lector lee esta frase.

Michio Kaku
Universos paralelos, página 11




La razón por la que el satélite WMAP puede darnos unas imágenes sin precedentes del universo en su infancia es que el cielo nocturno es como una máquina del tiempo. Como la luz viaja a una velocidad finita, las estrellas que vemos por la noche se ven como fueron en el pasado, no como son hoy. La luz de la Luna tarda poco más de un segundo en llegar a la Tierra, por lo que, cuando miramos a la Luna, la vemos en realidad tal como era un segundo antes. La luz del Sol tarda unos ocho minutos en llegar a la Tierra. Del mismo modo, muchas de las estrellas conocidas que vemos en el cielo están tan lejos que su luz tarda de 10 a 100 años en llegar a nuestros ojos. (Dicho de otro modo, están de 10 a 100 años luz de la Tierra. Un año luz equivale a la distancia que la luz recorre en un año, aproximadamente 10 billones de kilómetros.) La luz de las galaxias lejanas puede estar de cientos a miles de millones de años luz. Como resultado, representan una luz «fósil», parte de ella emitida incluso antes de la aparición de los dinosaurios. Algunos de los objetos más lejanos que podemos ver con nuestros telescopios se llaman quásares, grandes máquinas galácticas que generan cantidades increíbles de energía cerca del borde del universo visible, que pueden estar a una distancia de 12 a 13.000 millones de años luz de la Tierra, y, ahora, el satélite WMAP ha detectado una radiación emitida incluso antes, la de la bola de fuego original que creó el universo. Para describir el universo, los cosmólogos utilizan a veces el ejemplo de mirar hacia abajo desde lo alto del Empire State Building, que se eleva más de cien pisos sobre Manhattan. Cuando se mira hacia abajo desde lo alto, apenas puede verse la calle. Si la base del Empire State Building representa el big bang, entonces, mirando desde arriba, las galaxias lejanas estarían en la décima planta. Los quásares distantes vistos desde los telescopios de la Tierra estarían en la séptima planta. El fondo cósmico medido por el satélite WMAP estaría apenas una pulgada por encima de la calle. Y ahora el satélite WMAP nos ha dado la medición precisa de la edad del universo con una asombrosa exactitud del 1%: 13.700 millones de años.

Michio Kaku
Universos paralelos, página 13


El destino final del universo estará determinado por la energía oscura.

Michio Kaku
Universos paralelos, página 19


A la larga, esta teoría (la teoría de cuerdas) puede responder a la pregunta que ha perseguido a los cosmólogos desde que se propuso por primera vez la teoría del big bang: ¿qué pasó antes del big bang?

Michio Kaku
Universos paralelos, página 23


En el presente, la principal (y única) teoría que puede explicar la diversidad de las fuerzas que guían el universo es la teoría de las cuerdas o, en su última encarnación, la teoría M. (M quiere decir «membrana», pero también puede querer decir «misterio», «magia» e, incluso, «madre». Aunque la teoría de cuerdas y la teoría M son esencialmente idénticas, la teoría M es un marco más misterioso y sofisticado que unifica varias teorías de cuerdas.)

Michio Kaku
Universos paralelos, página 24


La teoría de cuerdas y la teoría M se basan en la idea sencilla y elegante de que la desconcertante variedad de partículas subatómicas que forman el universo es similar a las notas que pueden tocarse en la cuerda de un violín o sobre una membrana como la del parche del tambor. (No se trata de cuerdas y membranas ordinarias; existen en el hiperespacio de diez y once dimensiones.) Tradicionalmente, los físicos veían los electrones como partículas puntuales infinitesimalmente pequeñas. Ello significaba que los físicos tenían que introducir una partícula puntual diferente para cada una de los cientos de partículas subatómicas que encontraban, lo cual resultaba muy confuso. Pero según la teoría de cuerdas, si tuviéramos un supermicroscopio que pudiera ver el corazón de un electrón, veríamos que no se trata en absoluto de una partícula puntual, sino de una pequeña cuerda vibrante. Sólo parecía ser una partícula puntual porque nuestros instrumentos son demasiado rudimentarios. Esta pequeña cuerda, a su vez, vibra a diferentes frecuencias y resonancias. Si punteáramos esta cuerda vibradora, cambiaría de forma y se convertiría en otra partícula subatómica, como un quark. Si la volvemos a puntear, se convierte en un neutrino. De este modo, podemos explicar la tormenta de partículas subatómicas como algo parecido a diferentes notas musicales en la cuerda. Ahora podemos reemplazar los cientos de partículas subatómicas vistas en el laboratorio por un solo objeto, la cuerda.

Michio Kaku
Universos paralelos, página 24


Es una ley de la física que la vida inteligente del universo se enfrentará necesariamente a su muerte. Pero también es una ley de la evolución que, cuando el entorno cambia, la vida tiene que abandonarlo, adaptarse a él o morir. Como es imposible adaptarse a un universo que se congela hasta morir, las únicas opciones son o morir o abandonar el universo. Cuando pensamos en la muerte final del universo, ¿es posible que dentro de billones de años haya civilizaciones con la tecnología necesaria para abandonar nuestro universo en un «salvavidas» dimensional y dirigirse hacia otro planeta mucho más joven y caliente? ¿O utilizarán su tecnología superior para construir una «urdimbre de tiempo» y viajar hacia su propio pasado, cuando las temperaturas eran mucho más cálidas?

Michio Kaku
Universos paralelos, página 28




El hecho de que el cielo nocturno sea negro, no blanco, ha planteado una paradoja cósmica sutil pero profunda durante siglos.

Michio Kaku
Universos paralelos, página 35


El universo no es infinitamente viejo. Hubo un Génesis. Hay un límite finito a la luz que nos llega a los ojos. La luz de las estrellas más distantes todavía no ha tenido tiempo de llegar hasta nosotros.

Michio Kaku
Universos paralelos, página 37


Kelvin calculó que, para que el cielo nocturno fuera blanco, el universo tendría que durar cientos de billones de años luz, pero, como el universo no tiene billones de años de antigüedad, el cielo es necesariamente negro. (También hay una segunda razón para que el cielo nocturno sea negro y es el tiempo de vida finito de las estrellas, que se mide en miles de millones de años.)

Michio Kaku
Universos paralelos, página 37


Si tuviésemos ojos capaces de ver las microondas, podríamos ver que más allá de la estrella más lejana se encuentra la propia creación.)

Michio Kaku
Universos paralelos, página 39


La fuerza, vista como una curvatura del espacio Newton consideraba el espacio y el tiempo como un ámbito vasto y vacío en el que podían ocurrir acontecimientos, según sus leyes del movimiento. El escenario estaba lleno de maravillas y misterio, pero era esencialmente inerte e inmóvil, un testigo pasivo de la danza de la naturaleza. Sin embargo, Einstein dio un vuelco a esta idea. Para Einstein, el propio escenario se convertiría en una parte importante de la vida. En el universo de Einstein, el espacio y el tiempo no eran un ámbito estático como había asumido Newton, sino que eran dinámicos, se torcían y curvaban de maneras extrañas. Supongamos que el escenario de la vida es reemplazado por una cama elástica sobre la que los actores se mecen suavemente por su propio peso. En este caso, vemos que el escenario se vuelve tan importante como los propios actores. Pensemos en una bola de bolos colocada sobre una cama. El colchón se hunde suavemente. A continuación disparemos una canica por la superficie alabeada del colchón. Recorrerá un camino curvado, orbitando alrededor de la bola de bolos. Un newtoniano, al ver la canica girando alrededor desde la distancia, podría llegar a la conclusión de que la bola ejerce una fuerza misteriosa sobre la canica. Un newtoniano podría decir que la bola ejerce un tirón que lleva la canica hacia el centro. Para un relativista, que puede observar de cerca el movimiento de la canica sobre la cama, es evidente que no hay ninguna fuerza en absoluto. Sólo hay la curva de la cama, que obliga a la canica a dibujar una línea curvada. Para el relativista no hay tirón, sólo hay el empuje ejercido por la cama curvada sobre la canica. Sustituyamos la canica por la Tierra, la bola de bolos por el Sol y la cama por el espacio-tiempo vacío, y veremos que la Tierra se mueve alrededor del Sol no por el tirón de la gravedad, sino porque el Sol curva el espacio alrededor de la Tierra, creando un empuje que obliga a la Tierra a moverse en círculo. Einstein llegó de este modo a creer que la gravedad era más como una tela que como una fuerza invisible que actuaba instantáneamente en todo el universo. Si uno sacude rápidamente esta tela, se forman unas ondas que viajan por la superficie a una velocidad definida. Esto resuelve la paradoja de la desaparición del Sol. Si la gravedad es un producto secundario de la curvatura de la tela del propio espacio-tiempo, la desaparición del Sol puede compararse a la acción de levantar súbitamente la bola de bolos de la cama. Cuando la cama vuelve a su forma original, envía unas ondas que recorren la sábana a una velocidad definida. Así, reduciendo la gravedad de la curvatura del espacio y el tiempo, Einstein pudo reconciliar la gravedad y la relatividad. Imaginemos una hormiga que intenta avanzar por una hoja de papel arrugada. Avanzará como un marinero borracho, balanceándose de izquierda a derecha, para atravesar el accidentado terreno. La hormiga asegurará que no está borracha y que una fuerza misteriosa tira de ella llevándola a la izquierda y a la derecha. Para la hormiga, el espacio vacío está lleno de fuerzas misteriosas que le impiden seguir un camino recto. Sin embargo, si miramos a la hormiga de cerca, vemos que no hay fuerza alguna que tire de ella. Es empujada por los pliegues de la hoja de papel. Las fuerzas que actúan sobre la hormiga son una ilusión causada por la curvatura del propio espacio. El «tirón» de la fuerza es en realidad el «empuje» creado cuando avanza por un pliegue del papel. Dicho de otro modo, la gravedad no tira; el espacio empuja. En 1915, Einstein pudo finalmente completar lo que llamó «teoría general de la relatividad», que desde entonces se ha convertido en la arquitectura sobre la que se basa toda la cosmología. En esta asombrosa nueva imagen, la gravedad no era una fuerza independiente que llenaba el universo, sino el efecto aparente de la curvatura de la tela del espacio-tiempo. Su teoría era tan potente que podía resumirse en una ecuación de menos de tres centímetros de longitud. En esta brillante nueva teoría, la cantidad de curvatura de espacio y tiempo estaba determinada por la cantidad de materia y energía que contenía. Pensemos en cuando tiramos una piedra a un lago, que crea una serie de ondas que emanan del impacto. Cuanto más grande es la piedra, más se alabea la superficie del lago. De manera similar, cuanto mayor es la estrella, mayor es el alabeo del espacio-tiempo que rodea a la estrella.

Michio Kaku
Universos paralelos, página 45


(Según la leyenda, un periodista le preguntó más tarde a Eddington: «Corre el rumor de que sólo tres personas en todo el mundo entienden la teoría de Einstein. Usted debe de ser una de ellas». Eddington se quedó callado y el periodista le dijo: «No sea modesto, Eddington». Éste se encogió de hombros y dijo: «No, no lo soy. Estaba pensando en quién podía ser el tercero».)

Michio Kaku
Universos paralelos, página 49


La razón por la que la relatividad perturba nuestro sentido común no es que sea equivocada, sino que nuestro sentido común no representa la realidad. Somos nosotros los bichos raros del universo. Vivimos en una parcela poco habitual, donde las temperaturas, las densidades y las velocidades son bastante suaves. Sin embargo, en el «universo real», las temperaturas pueden ser abrasadoramente calientes en el centro de las estrellas o espantosamente frías en el espacio exterior, y las partículas subatómicas que vuelan en el espacio suelen viajar a la velocidad de la luz. En otras palabras, nuestro sentido común ha evolucionado en una parte modesta y muy poco habitual del universo, la Tierra; no es sorprendente que no nos permita entender el verdadero universo. El problema no radica en la relatividad, sino en presumir que nuestro sentido común representa la realidad.

Michio Kaku
Universos paralelos, página 50


La evolución del universo tiene tres historias posibles. Si Omega es menor que 1 (y Lambda es 0), el universo se expandirá siempre hasta llegar a la gran congelación. Si Omega es mayor que r, el universo volverá a colapsarse en una gran implosión. Si Omega es igual a 1, el universo es plano y se expandirá para siempre. (Los datos del satélite WMAP muestran que Omega más Lambda es igual a 1, lo que significa que el universo es plano. Esto concuerda con la teoría inflacionaria.)

Michio Kaku
Universos paralelos, página 53


Mi argumento es que la teoría del big bang no se basa en la especulación, sino en cientos de datos tomados de varias fuentes diferentes, cada una de las cuales converge para sostener una teoría única y sistemática. (En ciencia, no todas las teorías se crean igual. Aunque cualquiera es libre de proponer su propia versión de la creación del universo, debería exigírsele una explicación de los cientos de datos recogidos que concuerdan con la teoría del big bang.)

Michio Kaku
Universos paralelos, página 56


Hubble siguió el debate intrigado. El problema clave era determinar la distancia de las estrellas, que es (y sigue siendo) una de las tareas más endemoniadamente difíciles de la astronomía. Una estrella brillante que esté muy lejos puede parecer idéntica a una estrella tenue que esté cerca. Esta confusión era fuente de grandes peleas y controversias en la astronomía. Hubble necesitaba una «candela estándar», un objeto que emitiese la misma cantidad de luz en cualquier lugar del universo, para resolver el problema. (En realidad, una parte importante del esfuerzo de la cosmología hasta el día de hoy consiste en intentar encontrar y calibrar estos indicadores. Muchos de los grandes debates de la astronomía se centran en determinar hasta qué punto son realmente fiables estas candelas estándar.) Si hubiese una candela estándar que ardiera uniformemente con la misma intensidad en todo el universo, una estrella que fuera cuatro veces más tenue de lo normal estaría simplemente dos veces más lejos de la Tierra.

Michio Kaku
Universos paralelos, página 57


El momento clave de su juventud (Gueorgui Gámov) tuvo lugar cuando fue a la iglesia y se llevó secretamente un poco de pan de la comunión después de la misa. Mirando a través de un microscopio, no consiguió ver diferencia alguna entre el pan de la comunión, que representaba la carne de Jesucristo, y el pan ordmano. «Pienso que éste fue el experimento que me hizo científico»

Michio Kaku
Universos paralelos, página 64


Gamow era un joven estudiante del Trinity sacó la raíz cuadrada del infinito, pero la cantidad de dígitos le produjo tanta urticaria que dejó las mates y se dedicó a la teología.

Michio Kaku
Universos paralelos, página 64


En la década de 1940, los intereses de Gamow empezaron a pasar de la relatividad a la cosmología, que él veía como un país rico por descubrir. Todo lo que se sabía del universo en aquella época era que el cielo era negro y que el universo se expandía. Gamow tenía en mente una sola idea: encontrar alguna prueba o «fósiles» que demostrasen que hubo un big bang hace miles de millones de años. No dejaba de ser una idea frustrante, porque la cosmología no es una ciencia experimental en el verdadero sentido de la palabra. No pueden llevarse a cabo experimentos sobre el big bang. La cosmología es más parecida a una historia de detectives, una ciencia de observación en la que se buscan «vestigios» o pruebas en la escena del crimen, más que una ciencia experimental donde se puedan realizar experimentos precisos.

Michio Kaku
Universos paralelos, página 66


El helio, conocido por ser el gas que se utiliza en los globos infantiles y los zepelines, en realidad es bastante raro en la Tierra, pero es el segundo elemento más abundante en el universo después del hidrógeno. Es tan raro, que se encontró por primera vez en el Sol y no en la Tierra. (En 1868, los científicos analizaban la luz del Sol observándola a través de un prisma. La luz del Sol refractada se descomponía en el arco iris habitual de colores y líneas espectrales, pero también detectaron débiles líneas espectrales causadas por un elemento misterioso nunca visto antes. Pensaron erróneamente que era un metal, cuyos nombres suelen terminar en «io», como litio y uranio. Bautizaron a este metal misterioso a partir de la palabra griega para designar el Sol, «Helios». Finalmente, en 1895, se encontró helio en la Tierra, en depósitos de uranio, y los científicos descubrieron con rubor que era un gas, no un metal. Así, el helio, descubierto por primera vez en el Sol, nació con un nombre equivocado.)

Michio Kaku
Universos paralelos, página 77


… nuestro Sol no es la verdadera «madre» de la Tierra. Aunque muchos pueblos de la Tierra lo han adorado como un dios que dio nacimiento a la Tierra, esto es sólo parcialmente correcto. Si bien la Tierra fue creada originalmente por el Sol (como parte del plano eclíptico de detritos y polvo que circulaba a su alrededor hace 4.500 millones de años), nuestro Sol es apenas lo bastante caliente para fusionar el hidrógeno en helio. Eso significa que nuestro verdadero «sol madre» era en realidad una estrella o colección de estrellas sin nombre que murió hace miles de millones de años en una supernova, que después sembró nebulosas cercanas con los elementos superiores más allá del hierro que forman nuestro cuerpo. Literalmente, nuestros cuerpos están hechos de polvo de estrellas, de estrellas que murieron hace miles de millones de años…
En el periodo siguiente a una explosión de supernova, queda un pequeño remanente llamado «estrella de neutrones» constituido por materia nuclear sólida comprimida de unos 30 kilómetros de diámetro. (Las estrellas de neutrones fueron predichas por primera vez por el astrónomo Fritz Zwicky en 1933, pero parecían tan fantásticas que los científicos las ignoraron durante décadas.) Como la estrella de neutrones emite radiación de forma irregular y gira rápidamente, parece un faro giratorio que arroja pulsos de radiación a medida que gira. Vista desde la Tierra, la estrella de neutrones parece pulsante y por eso se le llama «púlsar». Las estrellas extremadamente grandes, quizá superiores a 40 masas solares, cuando finalmente sufren una explosión de supernova podrían dejar en su lugar una estrella de neutrones, que es superior a 3 masas solares. La gravedad de esta estrella de neutrones es tan grande que puede contrarrestar la fuerza repulsiva entre neutrones, y la estrella quizá se colapsará en el objeto más exótico del universo, el agujero negro…

Michio Kaku
Universos paralelos, página 81


La historia de la materia oscura es quizás uno de los capítulos más extraños de la cosmología.

Michio Kaku
Universos paralelos, página 85


Zwicky publicó, él mismo, un catálogo de las galaxias. El catálogo empezaba con el encabezamiento: «Un recordatorio a los grandes sacerdotes de la astronomía americana y a sus sicofantes». El ensayo presentaba una crítica feroz de la naturaleza cerrada y estancada de la elite de la astronomía, que tendía a dejar fuera a visionarios como él. «Los sicofantes y ladrones puros de hoy parecen andar libres, sobre todo en la astronomía americana, para apropiarse de descubrimientos e invenciones realizados por lobos solitarios e inconformistas», escribió.

Michio Kaku
Universos paralelos, página 86


Después de dos mil años de investigación de la naturaleza de la materia y la energía, los físicos han determinado que sólo cuatro fuerzas fundamentales impulsan el universo. (Los científicos han intentado buscar una quinta fuerza posible, pero hasta ahora los resultados en esta dirección han sido negativos o poco concluyentes.)
La primera fuerza es la gravedad, que mantiene unido al Sol y guía a los planetas en sus órbitas celestes en el sistema solar. Si, de pronto, la gravedad se «apagara», las estrellas de los cielos estallarían, la Tierra se desintegraría y nosotros seríamos lanzados al espacio exterior a más de mil kilómetros por hora.
La segunda gran fuerza es el electromagnetismo, la fuerza que ilumina nuestras ciudades, llena nuestro mundo de televisores teléfonos móviles, radios, rayos láser e Internet. Si la fuerza electromagnética se desconectara de pronto, la civilización retrocedería un siglo o dos hacia la oscuridad y el silencio. Esto quedó ilustrado de manera gráfica en el gran apagón de 2003, que paralizó el nordeste de Estados Unidos. Si examinamos microscópicamente la fuerza electromagnética, vemos que en realidad está constituida por partículas diminutas, o cuantos, llamadas «fotones».
La tercera fuerza es la interacción nuclear débil, que es responsable de la desintegración radiactiva. Cuando la interacción débil no es lo bastante fuerte para mantener unido el núcleo del átomo, permite que el núcleo se rompa, o se desintegre lentamente. La medicina nuclear de los hospitales se basa fundamentalmente en la interacción nuclear débil. Esta interacción también ayuda a calentar el centro de la Tierra a través de materiales radiactivos que impulsan la enorme potencia de los volcanes. La interacción débil, a su vez, se basa en las interacciones de electrones y neutrinos (partículas fantasmagóricas que están casi desprovistas de masa y pueden pasar a través de billones de kilómetros de plomo sólido Sin interactuar con nada). Estos electrones y neutrinos interaccionan intercambiando otras partículas, llamadas «bosones W y Z».
La interacción nuclear fuerte mantiene los núcleos de los átomos unidos. Sin la interacción nuclear, los núcleos se desintegrarían, los átomos se dispersarían y la realidad tal como la conocemos se disolvería. La interacción nuclear fuerte es responsable de aproximadamente un centenar de los elementos que llenan el universo. Juntas, la interacción nuclear fuerte y la débil son responsables de la luz que emana de las estrellas a través de la ecuación de Einstein E = mc² Sin la interacción nuclear, el universo entero se oscurecería, la temperatura de la Tierra se desplomaría y los océanos se helarían.
Una asombrosa característica de estas cuatro fuerzas es que son completamente diferentes la una de la otra, con formas de energía y propiedades diferentes. Por ejemplo, la gravedad es con diferencia la más débil de las cuatro fuerzas, 1016veces más débil que la fuerza electromagnética. La Tierra pesa 6 billones de billones de kilogramos; sin embargo, su masa y su gravedad pueden ser anuladas fácilmente por la fuerza electromagnética. El peine que usamos, por ejemplo, puede atraer diminutas piezas de papel por electricidad estática, anulando de este modo la gravedad de toda la Tierra. Además, la gravedad es estrictamente atractiva. La fuerza electromagnética puede ser tanto atractiva como repulsiva, dependiendo de la carga de una partícula.

Michio Kaku
Universos paralelos, página 94


… hoy vemos que el universo está horriblemente fragmentado. No es uniforme ni simétrico en absoluto, sino que presenta cordilleras accidentadas, volcanes, huracanes, asteroides rocosos y estrellas que estallan, sin una unidad coherente; más aún, también vemos las cuatro fuerzas fundamentales sin relación entre ellas. Pero la razón por la que el universo está tan fragmentado es que es muy viejo y frío. Aunque el universo empezó en un estado de unidad perfecta, hoy ha recorrido muchas transiciones de fase o cambios de estado y las fuerzas del universo han ido liberándose las unas de las otras a medida que se enfriaba. El trabajo de los físicos es volver atrás para reconstruir los pasos con los que empezó originariamente el universo (en un estado de perfección) y que llevaron al universo fragmentado que vemos a nuestro alrededor.

Michio Kaku
Universos paralelos, página 99


La inflación representa la fusión de la cosmología tradicional con los avances de la física de partículas. Al ser una teoría cuántica, la física de partículas establece que hay una probabilidad finita de que ocurran acontecimientos improbables, como la creación de universos paralelos. Así, en cuanto admitimos la posibilidad de que sea creado un universo, abrimos la puerta a la probabilidad de que se cree un número interminable de universos paralelos. Pensemos, por ejemplo, en cómo se describe el electrón en la teoría cuántica. A causa de la incertidumbre, el electrón no existe en ningún punto único, sino en todos los puntos posibles alrededor del núcleo. Esta «nube» de electrones que rodea el núcleo representa al electrón en muchos sitios al mismo tiempo. Esta es la base fundamental de toda la química que permite a los electrones unir moléculas. La razón por la que nuestras moléculas no se disuelven es que los electrones paralelos bailan alrededor de ellas y las mantienen unidas. Del mismo modo, el universo fue en otros tiempos más pequeño que un electrón. Cuando aplicamos la teoría cuántica al universo, nos vemos obligados a admitir la posibilidad de que el universo exista simultáneamente en muchos estados. Dicho de otro modo, en cuanto abrimos la puerta a la aplicación de fluctuaciones cuánticas al universo, estamos casi obligados a admitir la posibilidad de universos paralelos. No parece que tengamos muchas opciones.

Michio Kaku
Universos paralelos, página 110



Aunque la teoría del universo a partir de la nada no puede demostrarse con medios convencionales, ayuda a responder a preguntas muy prácticas. Por ejemplo, ¿por qué no gira el universo? Todo lo que vemos a nuestro alrededor gira, desde los huracanes, los planetas y las galaxias a los quásares. Parece ser una característica universal de la materia en el universo. Pero el universo en sí no tiene spin. Cuando miramos a las galaxias en el firmamento, su spin total se compensa a cero. (Esto es una suerte, porque, como veremos en el capítulo 5, si el universo girara, el viaje en el tiempo sería algo normal y haría imposible escribir la historia.) La razón por la que el universo no gira puede ser el hecho de que nuestro universo saliera de la nada. Como el vacío no gira, no esperamos ver que se eleve ningún spin neto en nuestro universo. En realidad, todos los universos de burbujas dentro del multiverso pueden tener un spin neto igual a cero.

Michio Kaku
Universos paralelos, página 111


(La simetría que se rompió en el big bang se llama «simetría CP», la simetría que invierte las cargas y la paridad de las partículas de materia y antimateria.)

Michio Kaku
Universos paralelos, página 113


La idea del multiverso es atractiva porque todo lo que tenemos que hacer es partir de la base de que la ruptura espontánea ocurre aleatoriamente. No hay que hacer más presunciones. Cada vez que de un universo surge otro universo, las constantes físicas difieren del original, creando nuevas leyes de la física. Si es así, puede surgir una realidad totalmente nueva dentro de cada universo. Pero esto plantea una pregunta inquietante: ¿qué aspecto tienen estos otros universos? La clave para entender la física de los universos paralelos es entender cómo fueron creados, entender exactamente cómo se produce la ruptura espontánea.

Michio Kaku
Universos paralelos, página 113


Cuando nace un universo y se produce una ruptura espontánea, también se rompe la simetría de la teoría original. Para un físico, belleza significa simetría y simplicidad. Si una teoría es bella, significa que tiene una simetría poderosa que puede explicar una gran cantidad de datos de la manera más compacta y económica. Con mayor precisión, una ecuación se considera bella si sigue siendo la misma cuando intercambiamos sus componentes entre sí.

Michio Kaku
Universos paralelos, página 114
Las simetrías codifican la belleza oculta de la naturaleza.

Michio Kaku
Universos paralelos, página 114


… los científicos creen que el universo empezó en un estado de simetría perfecta, con todas las fuerzas unificadas en una fuerza única. El universo es bello, simétrico, pero bastante inútil. La vida tal como la conocemos no existe en su estado perfecto. A fin de que exista la posibilidad de vida, la simetría del universo tuvo que romperse al enfriarse.

Michio Kaku
Universos paralelos, página 116


Fases del universo

Posiblemente, la mayor contribución del satélite WMAP es que infunde confianza a los científicos en el sentido de que se dirigen hacia un «modelo estándar» de cosmología. Aunque todavía existen grandes grietas, los astrofísicos empiezan a ver surgir de los datos el esquema de una teoría estándar. Según la imagen que se está reuniendo actualmente, la evolución del universo procedió en fases distintas a medida que se enfriaba. La transición entre estos estadios representa la ruptura de una simetría y la separación de una fuerza de la naturaleza. Éstas son las fases y los hitos tal como los conocemos actualmente:
1. Antes de 10-43segundos: la era de Planck

Casi nada es seguro sobre la era de Planck. En la energía de Planck (1919mil millones de electronvoltios), la fuerza gravitatoria era tan fuerte como las otras fuerzas cuánticas. Como consecuencia, las cuatro fuerzas del universo probablemente estaban unificadas en una única «superfuerza». Quizás el universo existía en una fase perfecta de «nada», o en el espacio superdimensional vacío. La misteriosa simetría que mezcla las cuatro fuerzas, dejando igual las ecuaciones, es muy probablemente la «supersimetría» (la comentaremos en el capítulo 7). Por razones desconocidas, esta misteriosa simetría que unificó las cuatro fuerzas se rompió, y se formó una pequeña burbuja, el embrión de nuestro universo, quizá como resultado de una fluctuación aleatoria, cuántica. Esta burbuja tenía la dimensión de la «longitud de Planck», que es de 10-33 centímetros.
2. 10-43segundos: la era GUT

Se produjo la ruptura de simetría, creando una burbuja que se expandió rápidamente. Al inflarse la burbuja, las cuatro fuerzas fundamentales se separaron rápidamente una de la otra. La gravedad fue la primera fuerza que se separó de las otras tres, liberando una onda de choque por todo el universo. La simetría original de la superfuerza se descompuso en una simetría más pequeña, que quizá contenía la simetría SU(5) de GUT. Las restantes interacciones fuertes, débiles y electromagnéticas todavía estaban unificadas por esta simetría de GUT. El universo se infló por un factor enorme, quizá 1050, durante esta fase, por razones que no se comprenden, haciendo que el espacio se expandiera astronómicamente más rápido que la velocidad de la luz. La temperatura era de 10³²grados.
3. 10-34segundos: el final de la inflación

La temperatura cayó a 1027grados a medida que la interacción fuerte se separó de las otras dos fuerzas. (El grupo de simetría GUT se descompuso en SU(3) x SU(2) x U(1).) El periodo inflacionario terminó, permitiendo que el universo entrara en una expansión de Friedmann estándar. El universo consistía en una «sopa» de plasma caliente de quarks libres, gluones y leptones. Los quarks libres se condensaron en los protones y neutrones de hoy en día. Nuestro universo era bastante pequeño, tenía sólo las dimensiones del sistema solar presente. La materia y la antimateria se aniquilaron, pero el pequeño exceso de materia sobre la antimateria (uno partido por mil millones) dejó como remanente la materia que vemos hoy a nuestro alrededor. (Este es el nivel de energía que confiamos replicar en los próximos años mediante el acelerador de partículas del gran colisionador de hadrones.)
4. 3 minutos: la formación de núcleos

Las temperaturas cayeron lo suficiente para que los núcleos se formasen sin ser desgarrados por el intenso calor. El hidrógeno se fusionó en helio (creando la ratio actual del 75% de hidrógeno y 25% de helio). Se formaron algunas trazas de litio, pero la fusión de elementos superiores se detuvo porque los núcleos con 5 partículas eran demasiado inestables. El universo era opaco y la luz era dispersada por los electrones libres. Esto marca el fin de la bola de fuego primigenia.
5. 380.000 años: nacen los átomos

La temperatura cayó a 3.000 Kelvin. Los átomos se formaron mientras los electrones se establecían alrededor de los núcleos sin ser dispersados por el calor. Los fotones podían viajar libremente sin ser absorbidos. Esta es la radiación medida por el COBE y el WMAP. El universo, en otros tiempos opaco y lleno de plasma, se hizo transparente. El cielo, en lugar de ser blanco, se volvió negro.
6. Mil millones de años: las estrellas se condensan

La temperatura cayó a 18 K. Los quásares, las galaxias y los grupos galácticos empezaron a condensarse, principalmente como producto de diminutas ondas cuánticas en la bola de fuego original. Las estrellas empezaron a «cocinar» los elementos ligeros como el carbono, el oxígeno y el nitrógeno. Las estrellas que habían estallado arrojaron elementos más allá del hierro hacia el espacio. Ésta es la época más lejana que puede sondear el telescopio espacial Hubble.
7. 6.500 millones de años: la expansión de De Sitter

La expansión de Friedmann fue terminando gradualmente y el universo empezó a acelerar y entrar en una fase de inflación, llamada «la expansión de De Sitter», dirigida por una fuerza antigravitatoria misteriosa que todavía no se comprende.
8. 13.700 millones de años: hoy

El presente. La temperatura ha caído a 2,7 K. Vemos el universo actual de galaxias, estrellas y planetas. El universo sigue acelerándose de forma expansiva.

Michio Kaku
Universos paralelos, página 123


Aunque Einstein creía que los agujeros negros eran demasiado increíbles para existir en la naturaleza, demostró con ironía que eran aún más extraños de lo que podía pensarse, teniendo en cuenta la posibilidad de que en el centro de un agujero negro se encuentren los agujeros de gusano. Los matemáticos los llaman «espacios múltiplemente conectados». Los físicos los llaman «agujeros de gusano» porque, tal como un gusano que perfora la tierra, crean un atajo alternativo entre dos puntos. A veces se les llama «portales o pasadizos dimensionales». Se llamen como se llamen, es posible que un día proporcionen el medio definitivo para el viaje interdimensional.

Michio Kaku
Universos paralelos, página 135

Las paradojas

Tradicionalmente, otra razón por la que los físicos descartaban la idea del viaje en el tiempo era la de las paradojas del tiempo. Por ejemplo, si uno viaja atrás en el tiempo y mata a sus padres antes de nacer, su nacimiento es imposible. Por tanto, nunca se puede ir atrás en el tiempo para matar a los padres. Esto es importante, porque la ciencia se basa en ideas lógicamente coherentes; una paradoja de tiempo genuina sería suficiente para descartar totalmente el viaje en el tiempo.
Estas paradojas del tiempo pueden agruparse en varias categorías:

·Paradoja del abuelo. En esta paradoja, se altera el pasado de tal modo que se hace imposible el presente. Por ejemplo, si uno va al pasado lejano para encontrar a los dinosaurios, se encuentra accidentalmente con un mamífero pequeño y peludo que es el antepasado original de la humanidad. Si destruye a su antepasado, lógicamente no puede existir.
·Paradoja de la información. En esta paradoja, la información viene del futuro, lo que quiere decir que puede no tener origen. Por ejemplo, digamos que un científico crea una máquina del tiempo y después vuelve atrás en el tiempo para darse a sí mismo de joven el secreto del viaje en el tiempo. El secreto del viaje en el tiempo no tendría origen, porque la máquina del tiempo que posee el científico joven no fue creada por él, sino que le fue ofrecida por sí mismo siendo más viejo.
·Paradoja del fraude. En este tipo de paradoja, una persona sabe cómo será el futuro y hace algo que vuelve imposible este futuro. Por ejemplo, uno hace una máquina del tiempo para que lo lleve al futuro y ve que está destinado a casarse con una mujer llamada Jane. Sin embargo, en un arrebato, decide casarse con Helen, y de este modo hace imposible su propio futuro.
·La paradoja sexual. En este tipo de paradoja, uno es su propio padre, lo cual es una imposibilidad biológica. En una historia escrita por el filósofo británico Jonathan Harrison, el protagonista de la historia no sólo es su propio padre, sino que además se canibaliza a sí mismo. En el relato clásico de Robert Heinlein «Todos ustedes, zombis», el protagonista es al mismo tiempo su madre, su padre, su hermana y su hijo; es decir, un árbol familiar él solo. (Véanse las notas para más detalles. Resolver la paradoja sexual es en realidad bastante delicado, porque requiere conocimientos tanto del viaje en el tiempo como de la mecánica del ADN.)

Michio Kaku
Universos paralelos, página 165

La teoría cuántica se basa en la idea de que hay una probabilidad de que todos los sucesos posibles, por muy fantásticos o tontos que sean, puedan ocurrir. Eso, a su vez, se encuentra en el centro de la teoría del universo inflacionario: cuando se produjo el big bang, hubo una transición cuántica a un nuevo estado en el que el universo súbitamente se expandió en gran manera. Por 10 visto, nuestro universo completo puede haber surgido de un salto cuántico altamente improbable.

Michio Kaku
Universos paralelos, página 167


Los seres humanos, los vegetales o el polvo cósmico, todos bailamos al compás de un tiempo misterioso, entonado en la distancia por un intérprete invisible.

Michio Kaku
Universos paralelos, página 177


Tras observar setenta años las paradojas de la teoría cuántica, Wheeler es el primero en admitir que no tiene todas las respuestas. Sigue cuestionando siempre sus planteamientos. Cuando se le pregunta por el problema de la medición en la mecánica cuántica, dice: «Esta cuestión me está volviendo loco. Confieso que a veces me tomo con una seriedad del 100% la idea de que el mundo es producto de la imaginación y, otras veces, que el mundo existe independientemente de nosotros. Sin embargo, suscribo de todo corazón las siguientes palabras de Leibniz: "El mundo puede ser un fantasma y la existencia un mero sueño, pero un sueño o un fantasma bastante real si aplicando bien la razón nunca nos vemos engañados por ella"». Hoy en día, la teoría de los muchos mundos o de la decoherencia está adquiriendo popularidad entre los físicos. Pero a Wheeler le preocupa que requiera «demasiado exceso de equipaje». Está acariciando la idea de dar otra explicación más al problema del gato de Schrödinger. Se trata de una teoría poco ortodoxa, a la que denomina «It from bit», que empieza con la presunción de que la información está en la raíz de toda existencia. Cuando miramos a la Luna, una galaxia o un átomo, su esencia, según afirma él, se encuentra en la información almacenada dentro de ellos. Pero esta información empieza a existir cuando el universo se observa a sí mismo. Dibuja un diagrama circular que representa la historia del universo. Al principio del universo, éste empezó a existir porque fue observado. Esto significa que it (la materia en el universo) empezó a existir cuando se observó la información (bit) del universo. Llama a esto el «universo participativo», la idea de que el universo se adapta a nosotros del mismo modo que nosotros nos adaptamos a él, que nuestra mera presencia lo hace posible. (Como no hay un consenso universal sobre el problema de la medición en la mecánica cuántica, la mayoría de los físicos prefieren esperar a ver qué pasa con esta teoría.)

Michio Kaku
Universos paralelos, página 197


Las aplicaciones prácticas de la teleportación cuántica son potencialmente enormes, aunque debería apuntarse que hay varios problemas prácticos. En primer lugar, el objeto original queda destruido en el proceso, por lo que no pueden hacerse copias exactas del objeto teleportado. Sólo es posible una copia. En segundo lugar, no se puede teleportar un objeto más rápido que la luz. La relatividad todavía tiene vigor, incluso para teleportación cuántica. (Para teleportar el objeto A al objeto C, todavía se necesita un objeto B intermedio que los conecte a ambos y que viaje a una velocidad menor que la de la luz.) En tercer lugar, quizá la limitación más importante a la teleportación cuántica es la misma a la que se enfrenta la computación cuántica: los objetos en cuestión tienen que ser coherentes. El mínimo contacto con el entorno destruirá la teleportación cuántica. Pero es concebible que durante el siglo XXI pueda teleportarse el primer virus.

Michio Kaku
Universos paralelos, página 205


El principio copernicano y el principio antrópico son en cierto sentido perspectivas opuestas que marcan los extremos de nuestra existencia y nos ayudan a entender nuestro verdadero papel en el universo. Mientras el principio copernicano nos obliga a enfrentarnos a la pura enormidad del universo, y quizá del multiverso, el principio antrópico nos obliga a darnos cuenta de la rareza extrema de la vida y la conciencia.

Michio Kaku
Universos paralelos, página 397


Personalmente, desde un punto de vista puramente científico, creo que quizás el argumento más fuerte a favor de la existencia del Dios de Einstein o de Spinoza procede de la teleología. Si la teoría de cuerdas se confirma por fin experimentalmente como la teoría del todo, debemos preguntar de dónde vienen las propias ecuaciones. Si la teoría del campo unificado es realmente única, como creyó Einstein, debemos preguntarnos de dónde viene esta cualidad de única. Los físicos que creían en este Dios creen que el universo es tan bello y sencillo que sus leyes definitivas no podrían ser un accidente. El universo podría ser totalmente aleatorio o constituido por electrones o neutrinos inertes, incapaces de crear vida, ya no digamos vida inteligente. Si, como creo yo y algunos científicos, las leyes definitivas de la realidad serán descritas por una fórmula de apenas dos centímetros y medio de longitud, la pregunta es: ¿de dónde viene esta ecuación?

Michio Kaku
Universos paralelos, página 408



Ninguna fórmula mágica procedente de la cosmología y la física embelesará a las masas y enriquecerá sus vidas espirituales.
Para mí, el significado real de la vida es que nosotros creamos nuestro propio significado. Nuestro destino es labramos un futuro y no esperar que nos sea procurado por alguna autoridad superior.

Michio Kaku
Universos paralelos, página 409


En lugar de maldecir el destino, deberíamos aceptarnos a nosotros mismos como somos e intentar satisfacer los sueños que entren dentro de nuestras posibilidades.

Michio Kaku
Universos paralelos, página 410


Quizás el propósito y significado de la generación actual es asegurar que la transición a una civilización de tipo I sea suave.

Michio Kaku
Universos paralelos, página 412








No hay comentarios: